2105-1.12 Revision 6 11/09/78

CENTRAL FILE THREE MILE ISLAND NUCLEAR STATION UNIT #2 OPERATING PROCEDURE 2105-1.12 RADIATION MONIORING SYSTEM SETPOINTS

CONTROLLED CORY

Table of Effective Pages

Page Date	Revision	<u>p</u> <u>p</u>	age	Date	Revision	Page	Date	Revision
1.0 09/28	/76 0		25.0	05/04/78	4	51.0	05/04/78	4
2.0 06/20	/78 5		26.0	05/04/78	4	52.0	05/04/78	4
3.0 06/20	/78 5		27.0	05/04/78	4	53.0	05/04/78	4
4.0 06/20	/78 5		28.0	05/04/78	4	54.0	05/04/78	4
5.0 11/09	/78 6		29.6	05/04/78	à	55.0	06/20/78	5
5.1 06/20	/78 5		30.0	05/04/78	Å	56.0	06/20/78	Š
5.2 06/20	/78 5		31.0	06/20/78	5	57.0	05/04/79	Å
6.0 04/21	177 2		32 0	06/20/78	ž	58 0	05/04/78	A
7.0 04/21	177 2		33.0	05/04/78	Å	59.0	05/04/78	2
8.0 04/21	177 2		34 0	06/20/78	-	60.0	05/04/78	1
9 0 04/21	177 2		35 0	06/20/78	5	61 0	05/04/79	
10 0 04/21	177 2		36.0	05/04/78	Å	62 0	05/04/20	7
11 0 04/21	177 2		37 0	06/20/78	ř	63.0	05/04/78	7
12 0 04/21	177 2		38.0	06/20/78	5	64 0	05/04/78	
13 0 04/21	177 2		39 0	05/04/79	Å	65.0	05/04/70	7
14 0 04/21	177 2		40 0	05/04/78		65.0	05/04/78	4
15 0 04/21	177 2		41 0	05/04/78	4	67.0	05/04/78	4
16 0 05/04	179 4		12 0	05/04/78	4	69.0	05/04/78	1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
17 0 04/21	177 2		42.0	05/04/78	4	60.0	05/04/78	4
10 0 04/21	177 2		43.0	05/04/78	4	09.0	05/04/78	1998 4 1944
10.0 04/21/	179 5		44.0	05/04/78	4	70.0	05/04/78	4
20 0 04/21	170 5		45.0	05/04/78	4	/1.0	05/04/78	4
20.0 04/21/	177 2	29、电视和自己	40.0	05/04/78	4	12.0	05/04/78	4
21.0 04/21/	177 2		47.0	05/04/78	4	74.0	05/04/78	4
22.0 04/21/	177 2		48.0	05/04/78	4	74.0	05/04/78	4
23.0 04/21/	177 2		49.0	05/04/78	4	/5.0	05/04/78	4
24.0 04/21/	11: 2		50.0	05/04//8	4	76.0	05/04/78	4
Unit 1 Staff	Recommends Ap	proval		Unit	2 Staff Rec	ommends A	oproval	
Acomyal	1.AFI	Date		-	roval	NA	Date	
C	ognizant Dept. Hca	d Date	S. Control		Cogn	izant Dept. He	ad Uate	
	至41.5月2月1日							
Unit 1 PORC	Recommends A MH men of PORC	pproval Date	-	Unit	2 PORC Re	commends A hlbrach a of PORC	Approval	11/4/78
Unit 1 Superint	tendent Approva	l Date		Uni	t 2 Superinter	pdent Approv	val M Date	11/9/78
	the second se					F		
		4.5	an a	300 ESA	V	1		//
Manager Genera	ation Quality Ass	surance Appr	ova: _		11179	2	Date	

2105-1.12 Revision 0 09/28/76

THREE MILE ISLAND NUCLEAR STATION UNIT #2 OPERATING PROCEDURE 2105-1.12 Radiation Monitoring System Setpoints

1. PURPOSE

The intent of this procedure is to provide a list of current Radiation Monitoring System alert and hi-alarm setpoints, the basis for the setpoint and the calculations used to determine the setpoint.

2.0 DESCRIPTION

76

15-C 11-74

The Radiation Monitoring System alert and hi-alarm setpoints are intended to be both a means of informing control room personnel of abnormal radiation contamination levels and of initiating automatic action to reduce the consequences of these abnormal radiation levels. This document describes these setpoints but does not detail automatic or manual responses to any alarm. This document should be used in conjunction with the following:

1. TMI-2 Final Safety Analysis Report.

TMI-2 Technical Specifications.

Emergency Procedure 2207-1.7; Excessive Radiation Levels.

Response to Alarm procedure 2204-12.

	· · · ·	AREA MONITORS.	
MONITOR		ALERT ALARM	HIGH ALARM
HP-R-201		0.7 MR/hr	1.4 MR/hr
HP-R-202		0.7 MR/hr	1.4 MR/hr
HP-R-204		1.0 MR/hr	2.0 MR/hr
HP-R-205		1.0 MR/hr	2.0 MR/hr
HP-R-206		10.0 MR/hr	20.0 MR/hr
HP-R-207		1.0 MR/hr	2.0 MR/hr
HP-R-209	(Modeš 1,2,3,4 & 5)	2.0 R/hr	5.0 R/hr
	(Mode 6)	100.0 MR/hr	1.0 R/hr
HP-R-210	(Modes 1,2,3,4 & 5)	2.0 R/hr	5.0 R/hr
	(Mode 6)	100.0 MR/hr	1.0 R/hr
HP-R-211		25.0 MR/hr	50.0 MR/hr
HP-R-212	1	25.0 MR/hr	50.0 MR/hr
HP-R-213		25.0 MR/hr	50.0 MR/hr
HP-R-214		25.0 MR/hr	8.0 R/hr
HP-R-215		10.0 MR/hr	20.0 MR/hr
HP-R-218		25.0 MR/hr	50.0 MR/hr
HP-R-231		500.0 MR/hr	1.0 R/hr
HP-R-232		1.2 MR/hr	2.0 MR/hr
HP-R-233		1.0 MR/hr	2.0 MR/hr
HP-R-234		1.0 MR/hr	2.0 MR/hr
HP-R-3236		10.0 MR/hr	20.0 MR/hr
HP-R-3238	•	10.0 MR/hr	20.0 MR/hr
HP-R-3240		10.0 MR/hr	20.0 MR/hr

198 080

-22

2

....

-23

.

.....

ATMO	SPHE	RIC	MONI	TOR

MONITOR	ALERT ALARM	HIGH ALARM
HP-R-219 (P)	6.5 X 10 ⁺² CPM	1.3 X 10 ⁺³ CPM
HP-R-219 (I)	7.9 X 10 ⁺⁴ CPM	1.58 X 10 ⁺⁵ CPM
HP-R-219 (G)	5.0 X 10 ⁺³ CPM	1.0 X 10 ⁺⁴ CPM
HP-R-220 (P)	150 CPM	300 CPM
HP-R-220 (I)	100,000 CPM	200,000 CPM
HP-R-220 (G)	130 CPM	260 CPM
HP-R-221A (P)	4000 CPM	8000 CPM
HP-R-221A (I)	125,000 CPM	250,000 CPM
HP-R-221A (G)	20,000 CPM	40,000 CPM
HP-R-221B (P)	3500 CPM	7000 CPM
HP-R-221B (I)	100,000 CPM	200,000 CPM
HP-R-221B (G)	15,000 CPM	30,000 CPM
HP-R-222 (P)	2500 CPM	5000 CPM
HP-R-222 (I)	75,000 CPM	150,000 CPM
HP-R-222 (G)	10,000 CPM	20,000 CPM
HP-R-223 (P)	5.5 X 10 ⁺² CPM	1.1 X 10 ⁺³
HP-R-223 (I)	1.15 X 10 ⁺⁵ CPM	2.3 X 10 ⁺⁵ CPM
HP-R-223 (G)	130 CPM	260 CPM
HP-R-224 (P)	5.5 X 10 ⁺² CPM	1.1 X 10 ⁺³ CPM
HP-R-224 (I)	1.15 X 10 ⁺⁵ CPM	2.3 X 10 ⁺⁵ CPM
HP-R-224 (G)	130 CPM	260 CPM
HP-R-225 (P)	5000 CPM	10,000 CPM
HP-R-225 (I)	100,000 CPM	200,000 CPM
IP-R-225 (G)	40,000 CPM	80,000 CPM

1

-22

. .

ATMOSPHERIC MONITOR (cont'd)

MONITOR	ALERT ALARM	HIGH ALARM
HP-R-226 (P)	5000 CPM	10,000 CPM
HP-R-226 (I)	100,000 CPM	200,000 CPM
HP-R-226 (G)	40,000 CPM	80,000 CPM
HP-R-227 (P)	25,000 CPM	50,000 CPM
HP-R-227 (I)	2000 CPM	5000 CPM
HP-R-227 (G)	10,000 CPM	20,000 CPM
HP-R-228 (P)	2000 CPM	4000 CPM
HP-R-228 (I)	50,000 CPM	100,000 CPM
HP-R-228 (G)	10,000 CPM	20,000 CPM
HP-R-229 (P)	80,000 CPM	160,000 CPM
HP-R-229 (I)	200,000 CPM	400,000 CPM
HP-R-229 (G)	60,000 CPM	120,000 CPM
WDG-R-1480 (G)	200,000 CPM	400,000 CPM
WDG-R-1485 (G)	150,000 CPM	300,000 CPM
WDG-R-1486 (G)	150,000 CPM	300,000 CPM
VA-R-748 (G)	1000 CPM	2000 CPM

2105-1.12 Revision 6 11/09/78

......

23

:

	LIQUID MONITORS	
MONITOR	ALERT ALARM	HIGH ALARM
MU-R-720 (Gross)	2.5 X 10 ⁺⁵ CPM	5.0 X 10 ⁺⁵ CPM
MU-R-720 (Analyze)	2.5 X 10 ⁺⁵ CPM	5.0 X 10 ⁺⁵ CPM
IC-R-1091	1000 CPM	5000 CPM
IC-R-1092	1000 CPM	5000 CPM
IC-R-1093	400 CPM	2000 CPM
WDL-R-1311*	1800 CPM	9000 CPM
DC-R-3399	400 CPM	2000 CPM
DC-R-3400	400 CPM	2000 CPM
NS-R-3401	400 CPM	2000 CPM
SF-R-3402	4000 CPM	10,000 CPM
WT-R-3894	1000 CPM	2000 CPM
WT-R-3895	750 CPM	1500 CPM

*During Release see HPP 1621.2 Releasing Radioactive Liquid Waste, for determination of setpoint, since the setpoint will vary depending on concentration to be released.

41

HP-R-201

Location:

Control Room

HIGH ALARM SETPOINT: 1.4 mR/hr

Basis:

The Control Room is designed for continuous occupancy at a maximum of 3 REM in 90 days.

Calculation:

 $\frac{3 \times 10^3 \text{ mR}}{(90 \text{ Days})(24 \text{ hous/day})} = 1.4 \text{ mR/hr}$

ALERT SETPOINT: 0.7 mR/hr

Basis: _ _ _ 50% of high alarm setpoint.

198 084

2

....

....

-

227

. .. .

HP-R-202

Location:

Cable Room

HIGH ALARM SETPOINT: 1.4 mR/hr

Basis:

The Control Room is designed for continuous occupancy at a maximum of 3 REM in 90 days.

Calculation:

 $\frac{3 \times 10^3 \text{ mR}}{(90 \text{ Days})(24 \text{ hous/day})} = 1.4 \text{ mR/hr}$

ALERT SETPOINT:

0.7 mR/hr

Basis:

50% of high alarm setpoint

-

.

....

HP-R-204

.;

1

Auxiliary Building 281' Elevation - Reactor Building Emergency Cooling Booster Pump Area.

HIGH ALARM SETPOINT: Basis:

Location:

2.0 MR/hr

2.5 MR/hr is the design value for accessible areas in the Auxiliary Building during normal operations. Choosing the nearest lower meter graduation, the setpoint is 2.0 MR/hr. Reference: TMI Unit #2 FSAR; Section 12.1.

ALERT ALARM SETPOINT: 1.0 MR/hr Basis: 50% of the

50% of the High Alarm Setpoint.

2105-1.12 Revision 2 04/21/77

.

27

. .

+ + +

HP-R-205

..

Location:

Auxiliary Building 281' elevation - Reactor Coolant Evaporator Control Panel Area.

HIGH ALARM SETPOINT:

Basis:

2.0 MR/hr

2.5 MR/hr is the design value for accessible areas in the Auxiliary Building during normal operations. Choosing the nearest lower meter graduation, the setpoint is 2.0 MR/hr. Ref: TMI-2 FSAR: Section 12.1.

ALERT SETPOINT:

1.0 MR/hr

Basis:

50% of the High Alarm Setpoint

HP-R-206

•

Location:

Auxiliary Building - 281' elevation - Make-Up Tank Area.

HIGH ALARM SETPOINT:

Basis:

20.0 MR/hr

25.0 MR/hr is the design value for the corridor between the Make-Up Tank Cubicle and the Make-Up Demineralizer Cubicle. Choosing the nearest lower meter graduation, the setpoint is 20.0 MR/hr.

Ref: TMI-2 FSAR; Section 12.1.

ALERT SETPOINT:

10.0 MR/hr

Basis:

50% of the High Alarm Setpoint.

:

HP-R-207

Auxiliary Building 305' Elevation - Intermediate Cooling Pump Area.

HIGH ALARM SETPOINT:

Location:

2.0 MR/hr.

Basis:

2.5 MR/hr is the design value for accessible areas in the Auxiliary Building during normal operations. Choosing the nearest lower meter graduation, the setpoint is 2.0 MR/hr. Reference: TMI Unit #2 FSAR; Section 12.1.

ALERT ALARM SETPOINT:

1.0 MR/hr

Basis:

50% of the High Alarm Setpoint.

198 089

:

HP-R-209

...

Location:

Reactor Building - Fuel Handling Bridge -North.

HIGH ALARM SETPOINT: Basis:

Modes 1, 2, 3, 4, 5: 5 R/hr 5 X Background: Background is anticipated to be approximately 1 R/hr on the fuel handling bridges during normal operations.

ALERT SETPOINT: Modes 1, 2, 3, 4, 5: 2 R/hr. Basis: 2 X Background: Backgroung = 1 R/hr.

HIGH ALARM SETPOINT: Basis: Mode 6: 1 R/hr

1 R/hr is indicative of radiation levels at the bridge due to accidents involving spent fuel, but above those levels which may be attributable to other sources.

ALERT SETPOINT:

100 MR/hr.

Basis:

100 MR/hr will alert the operator to notify the HP Dept of the need to control the area as a "High Radiation Area".

Ref: 10CFR20.202(b)(3)

198 090

-

:

2105-1.12 Revision 2

111

HP-R-210

Location: Reactor Building - Fuel Handling Bridge - South

HIGH ALARM SETPOINT: Modes 1, 2, 3, 4, 5: 5 R/hr. Basis: 5 X Background: Background is anticipated to be approximately 1 R/hr on the fuel handling

bridges during normal operations.

ALERT SETPOINT: Modes 1, 2, 3, 4, 5: 2 R/hr. Basis: 2 X Background: Background = 1 R/hr.

100 MR/hr.

HIGH ALARM SETPOINT: Basis: Mode 6: 1 R/hr.

1 R/hr is indicative of radiation levels at the bridge due to accidents involving spent fuel, but above those levels which may be attributable to other sources.

ALERT SETPOINT:

Basis:

100 MR/hr will alert the operator to notify the

HP Dept of the need to control the area as a "High Radiation Area".

Ref: 10CFR 20.202(b)(3).

11.0

..

-

:

HP-R-211

Location:

Reactor Building 305' elev. - Personnel Access Hatch Area.

HIGH ALARM SETPOINT:

Basis:

50 MR/hr.

2 times the design value (25 MR/hr) for the 305' elevation of the Reactor Building outside the secondary shield in the vicinity of the Personnel Access Hatch.

Ref: TMI-2 FSAR; Section 12.1.

ALERT SETPOINT:

25 MR/hr.

Basis

50% of the High Alarm Setpoint.

4

•

....

HP-R-212

Location:

Reactor Building 305' elev. - Equipment Access Hatch Area.

HIGH ALARM SETPOINT:

Basis:

50 MR/hr.

2 times the design value (25 MR/hr) for the 305' elevation of the Reactor Building outside the secondary shield in the vicinity of the Equipment Access Hatch.

Ref: TMI-2 FSAR; Section 12.1.

ALERT SETPOINT:

25 MR/hr.

Basis:

50% of the High Alarm Setpoint.

....

23

7

-

HP-R-213

Location:

Reactor Building 305' elev. - In-Core Instrument Panel Area.

HIGH ALARM SETPOINT:

50 MR/hr.

Basis:

2 times the design value (25 MR/hr) for the 305' elevation of the Reactor Building outside the secondary shield in the vicinity of the In-Core Instrument Panel Area.

Ref: TMI-2 FSAR; Section 12.1.

ALERT SETPOINT:

Basis:

25 MR/hr. 50% of the High Alarm Setpoint.

-23

. .

HP-R-214

Location:

Reactor Building Dome

HIGH ALARM SETPOINT:

8 R/hr.

Basis:

Due to the attenuation rating of the ionchamber lead shielded containment $(10^9 \text{ MR/hr} \text{ to} 10^7 \text{ MR/hr})$, 8 R/hr is equivalent to 800 R/hr in the Reactor Building - a level indicative of a LOCA.

ALERT ALARM SETPOINT:

Basis:

25 MR/hr.

While the Reactor is operating, HP-R-214 is not relied upon for personnel protection. However, it may be used as preliminary indication of radiation conditions in the Reactor Building prior to any entry.

-

•

HP-R-215

Spent Fuel Pool Fuel Handling Bridge - Fuel Handling Building.

HIGH ALARM SETPOINT: Basis:

Location:

20 MR/hr TMI Unit #2 Technical Specification, Table 3.3-6.1.

ALERT ALARM SETPOINT: 10 MR/hr.

Basis:

50% of High Alarm Setpoint

-

.

HP-R-218

Location:

Auxiliary Building 281' Elevation - Waste Disposal Storage Area.

HIGH ALARM SETPOINT: 50 MR/hr.

Basis:

2 times the design value (25 MR/hr) for the Waste Disposal Storage Area.

Reference: TMI Unit #2 FSAR, Section 12.1.

ALERT ALARM SETPOINT: 25 MR/hr.

Basis:

50% of the High Alarm Setpoint.

.

-

.....

HP-R-231

Location:

Auxiliary Building 280' Elevation - Auxiliary Building Sump Tank Filter Room.

HIGH ALARM SETPOINT:

1 R/hr.

Basis:

1 R/hr requires the area to be maintained locked and is indicative of a severe radiological hazard.

Reference:

ALERT ALARM SETPOINT: 500 MR/hr.

Basis:

500 mgm.

50% of the High Alarm Setpoint.

.....

-

-21

:

HP-R-232

Location; Auxiliary Building 315'-6" Elevation - Mezzanine Area above Reactor Building Sump Filters.

HIGH ALARM SETPOINT:

Basis:

2.0 MR/hr.

2.5 MR/hr is the design value for accessible areas in the Auxiliary Building during normal operations. Choosing the nearest lower meter graduation, the setpoint is 2.0 MR/hr. Reference: TMI Unit #2 FSAR; Section 12.1.

ALERT ALARM SETPOINT:

Basis:

1.2 MR/hr.

 \gtrsim 50% of the design value for accessible areas in the Auxiliary Building.

.

HP-R-233

Location: Auxiliary Building 315'-6" Elevation - Mezzanine
Area above Spent Fuel Cooling Filters

HIGH ALARM SETPOINT:

2.0 MR/hr.

1.0 MR/hr.

Basis:

2.5 MR/hr is the design value for accessible areas in the Auxiliary Building during normal operations. Choosing the nearest lower meter graduation, the setpoint is 2.0 MR/hr. Reference: TMI Unit #2 FSAR; Section 12.1.

ALERT ALARM SETPOINT:

Basis:

50% of the High Alarm Setpoint.

HP-R-234

Service Building 281' Elevation - Contaminated Drain Tank Room Area.

HIGH ALARM SETPOINT:

Location:

2.0 MR/hr.

1.0 MR/hr.

Basis:

2.5 MR/hr is the design value for accessible areas in the Auxiliary Building during normal operations. Choosing the nearest lower meter graduation, the setpoint is 2.0 MR/hr. Reference: TMI Unit #2 FSAR; Section 12.1.

ALERT ALARM SETPOINT:

Basis:

50% of the High Alarm Setpoint.

198 101

:

-

:

-

-21

:

-

HP-R-3236

Auxiliary Building 328' Elevation - Reactor Building Purge Air Exhaust Unit Area.

HIGH ALARM SETPOINT:

Location:

20.0 MR/hr.

Basis:

25.0 MR/hr is the design value for the Reactor Building Purge Air Exhaust Unit Area. Choosing the nearest lower meter graduation, the setpoint is 20.0 MR/hr.

Ref: TMI-2 FSAR; Section 12.1.

ALERT SETPOINT:

10.0 MR/hr.

Basis:

50% of the High Alarm Setpoint.

.

:

HP-R-3238

Auxiliary Building 328' Elevation - Auxiliary Building Exhaust Unit Area.

HIGH ALARM SETPOINT: Basis:

Location:

25.0 MR/hr is the design value for the Auxiliary Building Exhaust Unit Area. Choosing the nearest lower meter graduation, the setpoint is 20.0 MR/hr.

Ref: TMI-2 FSAR; Section 12.1.

ALERT SETPOINT:

10.0 MR/hr.

20.0 MR/hr.

Basis:

50% of the High Alarm Setpoint.

....

HP-R-3240

Location:

Auxiliary Building 328' Elevation - Fuel Handling Building Exhaust Unit Area.

HIGH ALARM SETPOINT:

Basis:

20.0 MR/hr.

25.0 MR/hr is the design value for the Fuel Handling Building Exhaust Unit Area. Choosing the nearest lower meter graduation, the setpoint is 20.0 MR/hr.

Ref: TMI-2 FSAR; Section 12.1.

ALERT SETPOINT:

10.0 MR/hr.

Basis:

50% of the High Alarm Setpoint.

• • •

....

HP-R-219 (Particulate)

Location:	Station Vent.
Sensitivity:	5.3 X 10 ⁺¹¹ CPM/µCi/cc (Sr-90) @ 8.5 SCFM, 1 in/hr.

HIGH ALARM SETPOINT: 1,300

Basis:

1,300 CPM

Alarm will activate if 50% of the Tech Spec release rate limit of 0.63 μ Ci/sec and a meter error factor of 75%.

Ref: TMI-2 Technical Specifications, Appendix B, Specification 2.3.2.b.

Case:

1.) Assumed flowrate thru duct of 147,695 CFM (6.97 X 10⁷ cc/sec) - Normal flow. (0.5)(0.63 ^{uCi/}sec)(5.3 X 10⁺¹¹ CPM/_{uCi/cc})(0.75) / (6.97 X 10⁺⁷ cc/sec) = 1.7964 X 10³ CPM.

2.) Assumed flowrate thru duct of 197,695 CFM (9.33 $\times 10^{+7}$ cc/sec) - Reactor Building Purge in operation + normal flowrate. (0.5)(0.63 μ Ci/sec)(5.3 $\times 10^{+11}$ CPM/ μ Ci/cc)(0.75) / (9.33 $\times 10^{+7}$ cc/sec) = 1.342 $\times 10^{3}$ CPM.

Choosing the most conservative case the setpoint would be 1.342 X 10^3 CPM, however, since there is no meter graduation at this point, adjust the setpoint to 1.3 X 10^3 CPM.

ALERT ALARM SETPOINT:	6.5 X 10 ⁺² CPM.
Basis:	50% of High Alarm Setpoint.
	(1.3 X 10 ³ CPM)(0.5) = 650 CPM

198 105

198 106

HP-R-219 (Iodine)

Location:	Station Vent.
Sensitivity:	5.83 X 10 ^{+11 CPM} /Min./µCi/cc (I-131) assuming
	a 90% collection efficiency at 1.0 SCFM after 8 hours.

HIGH ALARM SETPOINT:

60,000 CPM

Basis:

Alarm will activate if 50% of the Tech Spec release rate limit of 0.30 µCi/sec is exceeded for 7 days assuming a ± 8.0% error due to flow variations and a meter error factor of 75%. Ref: TMI-2 Technical Specifications, Appendix B, Specification 2.3.2.b.

Case:

1.) Assumed flowrate thru duct of 147,695 CFM (6.97 X 10⁷ cc/sec) - Normal flow. (0.5)(0.30 ^{µCi/}sec)(5.83 X 10⁺¹¹ CPM/µCi/cc)(0.75-0.08)(2 hours) (60 min/hr) / (6.97 X 10⁷ cc/sec) = 100,800 CPM.

2.) Assumed flowrate thru duct of 197,695 CFM (9.33 X10⁺⁷ cc/sec)

- Reactor Building Purge (Both) in addition to normal flowrate. (0.5)(0.30 μ Ci/sec)(4.83 X 10⁺¹¹ CPM/Min/ μ Ci/cc)(0.75-0.08)(2 hours) (60 min/hr) / (9.33 X 10⁺⁷ cc/sec) = 75,300 CPM.

Choosing the most conservative case the setpoint would be 75,300 CPM, however, since there is no meter graduation at this point, adjust the setpoint to 6.0 \times 10⁺⁴ CPM.

ALERT ALARM SETPOINT:	30,000 CPM.
Basis:	50% of High Alarm Setpoint.
	$(6.0 \times 10^{+4} \text{ CPM}) (0.5) = 3.0 \times 10^{+4}$

26.0

HP-R-219 (Gas)

Location: Sensitivity:

3.55 X Ci/cc. (Xe-133)

Station

HIGH ALARM SETPOINT:

Basis:

10,000 Tech Sp of 1.2 X 10^5 M^3 /sec for gross gasous and a meter error factor of 75%. XePC is 3 X 10^{-7} µCi/cc. Ref: 10 20, Appendix B

> TMnical Specifications, Appendix B, Spion 2.3.2.a.

Cases:

Assumed flowrate thru 147,695 CFM (69.7 ^{M3}/sec) Normal flow.

= 1.375°CPM.

2.) Assumed flowrate thru d97,695 CFM (93.3 $^{M^3}$ /sec) Reactor Building Purge (Both) tion + normal flowrate. $(1.2 \times 10^{+5} M^3 / sec)(3.(uCi/cc))(3.55 \times 10^{+7} CPM/uCi/cc)(0.75))$ (93.3 M^2

= 1.0273PM.

Choosing the most conservatithe setpoint would be 1.0273 X 10^4 CPM, however, since thermeter graduation at this point, adjust the setpoint to 1.0 X.

ALERT ALARM SETPOINT: 5000 CPM

Basis: 50% of Hin Setpoint.

 $(1.0 \times 10.5) = 0.5 \times 10^3 \text{ CPM}.$

HP-R-220 (Particulate)

Location:	Control Room Intake Duct	
Sensitivity:	5.3 X 10 ⁺¹¹ CPM/µCi/cc (Sr-90) at 1 in/Hr	
	filter movement and 8.5 SCFM.	

HIGH ALARM SETPOINT: 300 CPM

Basis:

 MPC_a for restricted areas of 1 X 10⁻⁹ μ Ci/cc for Sr-90 assuming a ± 8.0% error due to flow variations and a 75% meter error factor. 10CFR Part 20, Appendix B Ref:

Calclculations:

(1 X 10⁻⁹ µCi/cc)(5.3 X 10⁺¹¹ CPM/µCi/cc) (0.75 - 0.08) = 355.1

NOTE: Since there is no meter graduation at this point, adjust the setpoint to the next lower meter graduation, 300 CPM.

LERT ALARM SETPOINT:	150 CPM
Basis:	50% of high alarm setpoint.
Calculation:	(300 CPM)(0.5) = 150 CPM

198 108

:

2

HP-R-220 (Iodine)

Location:	Control Room Intake Duct.	
Sensitivity:	3.895 X 10 ^{+12 CPM} /min/uCi/cc (I-131) assuming	
	a 77% collection efficiency of 8.55 CFM after 8 hours.	

HIGH ALARM SETPOINT:

Basis:

200,000 CPM

 MPC_a for restricted areas of 9 X 10^{-9} $_{\rm L}Ci/cc$ for I-131, alarm will activate in 10 minutes with MPC_a conditions assuming a \pm 8.0% error due to flow variations and a 75% meter error factor.

Ref: 10 CFR Part 20, Appendix B Calculations: ___ (9 X $10^{-9} \text{ }_{\nu}\text{Ci/cc})(3.895 \text{ X } 10^{+12} \text{ CPM}/\text{min./}_{\mu}\text{Ci/cc})$ (10 min)(0.75-0.08) = 2.349 X 10^{+5} CPM <u>NOTE</u>: Since there is no meter graduation at this point, round setpoint to next.lower ten-thousands CPM, 2.0 X 10^5 CPM.

ALERT ALARM SETPOINT: 100,000 CPM

Basis:	50% of high alarm setpoint.
Calculation:	(2.0 X 10 ⁵ CPM)(C.5) = 1.C X 10 ⁵ CPM

29.0

HP-R-220 (Gas)

Location:

Control Room Intake Duct 3.55 X 10⁺⁷ CPM/µCi/cc (XE-133) Sensitivity:

260 CPM HIGH ALARM SETPOINT:

Basis:

Calculation:

 MPC_a for unrestricted areas of 1 X 10⁻⁵ µCi/cc for XE-133. Assumes meter error factor of 75%. 10 CFR Part 20, Appendix B. Ref: $(1 \times 10^{-5} \mu Ci/cc)(3.55 \times 10^{+7} CPM/\mu Ci/cc)(0.75)$ = 266.25 CPM. NOTE: Since there is no meter graduation at

this point the setpoint to the next lower tens CPM, 260 CPM.

ALERT ALARM SETPOINT: 130 CPM Basis: 50% of high alarm setpoint. Calculation: (260 CPM)(0.5) = 130 CPM

HP-R-221A (Particulate)

Location:	Fuel Handling Building Exhaust Duct Upstream
	of Filter
Sensitivity:	5.3 X 10 ^{+11 CPM} /µCi/cc (SR-90) @ 8.5 SCFM, 1 in/hr.

HIGH ALARM SETPOINT: 8000 CPM

Basis: Ala

Alarm will activate if 50% of the Tech Spec release rate limit of 0.63 uCi/sec at an exhaust flowrate of 38,000 CPM and a meter factor of 75%. In order to maintain isokinetic sampling, the sampler flowrate will be maintained at 5.5 scfm. For this calculation we will use a 90% overall collection efficiency for the filter. (0.50)(0.63 uCi/Sec)(5.3 X 10⁺¹¹ CPM/uCi/cc)(0.75)(8.5 scfm) _

Calculation: $(0.50)(0.63 \text{ }_{\text{u}}\text{Ci/Sec})(5.3 \text{ }_{\text{x}} 10^{+7} \text{ }_{\text{u}}\text{Ci/cc})(0.75)(8.5 \text{ }_{\text{scfm}}) = 8082$ (2.66 X 10⁺⁷ Ci/Sec)(0.90)(5.5 scfm) scfm

NOTE: Since there is no meter graduation at this point, adjust the setpoint to 8.0 X 10⁺³ CPM.

ALERT ALARM SETPOINT:	4000 CPM	
Basis:	50% of high alarm setpoint	
Calculation:	$(8.0 \times 10^{+3} \text{ CPM})(0.5) = 4.0 \times 10^{+3} \text{ CPM}.$	

198 111

HP-R-221A (Iodine)	
Location:	Fuel Handling Building Exhaust Duct Upstream
	of Filter.
Sensitivity:	3.895 X 10 ⁺¹² CPM/min/µCi/cc (I-131) assuming
	a 77% collection efficiency after 8 hours
	at 8.5 SCFM.

HIGH ALARM SETPOINT: 250,000 CPM

Basis:

Alarm will activate in 10 minutes if 50% of the Tech Spec release rate limit of 0.30 uCi/sec is exceeded for 7 days assuming a <u>+</u> 8.0% error due (-8.0% most conservative) to flow variations and a meter error factor of 75%. In order to maintain isokinetic sampling, the sampler flowrate will be maintained at 5.5 scfm For this calculation we will use a 90% overall collection efficiency for the filter.

Calculation:

(0.5)(0.30 u	Ci/sec)(3.895 X 10 ⁺¹² LPM/min/uCi/cc)(0.75-0.08)(10 min)(8.5 scfr
(2	.66 X 10 ⁺⁷ cc/sec) (0.90)(5.5 scfm)
= 2.5 X 10 ⁺⁵	СРМ
NOTE: Since there is no meter graduation at this point	
ad,	just the setpoint to 2.5 X 10 ⁺⁵ CPM.
ALERT ALARM SETPOINT:	125,000 CPM
Basis:	50% of high alarm setpoint

Calculation: $(2.5 \times 10^{+5} \text{ CPM}) (0.5) = 1.25 \times 10^{+5} \text{ CPM}$

198 112

HP-R-221A (Gas)

Location:	Fuel Handling Building	Exhaust Dust Upstream
	of Filter.	••
Sensitivity:	3.55 X 10+7 CPM/uCi/cc	(Xe-133)

HIGH ALARM SETPOINT: 40,000 CPM

Basis:

Alarm will activate if the Tech Spec limit of 1.2 X 10^{+5} M³/sec for gross gaseous activity and a meter error factor of 75%. Xe-133 MPC is 3 X 10^{-7} µCi/cc. For this calculation we will use a 90% overall collection efficiency for the filter.

_ Ref: _ 10 CFR Part 20, Appendix B.

TMI - Unit 2 Tech Specifications, Appendix B, Section 2.3.2.

Calculation:

 $\frac{(1.2 \times 10^{+5} \text{ M}^3/\text{sec})(3.0 \times 10^{-7} \text{ uCi/cc})(3.55 \times 10^{+7} \text{ CPM}/\text{uCi/cc})(0.75)}{(2.66 \times 10^{+1} \text{ M}^3/\text{sec})(0.90)}$ = 4.0 × 10^{+4} CPM

ALERT ALARM SETPOINT: 20,000 CPM

Basis:

50% of high alarm setpoint.

Calculation: $(4.0 \times 10^{4} \text{ CPM}) (0.5) = 2.0 \times 10^{4} \text{ CPM}$

198 113
2105-1.12 Revision 5 06/20/78

HP-R-221B (Particulate)

Location:	Fuel Handling Building Exhaust Duct Downstream
	of Filter
Sensitivity:	5.3 X 10 ⁺¹¹ CPM/µCi/cc (SR-90) @ 8.5 SCFM, 1 in/hr.

HIGH ALARM SETPOINT: 7000 CPM

Basis:

Alarm will activate if 50% of the Tech Spec release rate limit of 0.63 µCi/Sec at an exhaust flowrate of 38,000 CPM and a meter factor of 75%. In order to maintain isokinetic sampling, the sampler flowrate will be maintained at 5.5 scfm.

Calculation:

 $\frac{(0.50)(0.63 \text{ uCi/Sec})(5.3 \text{ X } 10^{+11} \text{ CPM}/\text{uCi/cc})(0.75)(8.5 \text{ scfm})}{(2.66 \text{ X}10^{+7} \text{ Ci/Sec})(5.5 \text{ scfm})} = 7274$ NOTE: Since there is no meter graduation at this point, adjust the setpoint to 7.0 X 10⁺³ CPM.

ALERT ALARM SETPOINT:	3500 CPM
Basis:	50% of high alarm setpoint
Calculation:	(7.0 X 10 ⁺³ CPM)(0.5) = 3.5 X 10 ⁺³ CPM.

2105-1.12 Revision 5 06/20/78

HP-R-221B (Iodine)

Location:	Fuel Handling Building Exhaust Duct Downstream
	of Filter.
Sensitivity:	3.895 X 10 ^{+12 CPM} /min/µCi/cc (I-131) assuming
	a 77% collection efficiency after 8 hours
	at 8.5 SCFM.

HIGH ALARM SETPOINT: 200,000 CPM

Basis:

Alarm will activate in 10 minutes if 50% of the Tech Spec release rate limit of 0.30 μ Ci/sec is exceeded for 7 days assuming a \pm 8.0% error due (-8.0% most conservative) to flow variations and a meter error factor of 75%.

Ref: TMI-2 Tech Spec, Appendix B.

Calculation:

(0.5)(0.30 uCi/sec)(3.895 X 10⁺¹² CPM/min/uCi/cc)(0.75-0.08)(10 min)(8.5 scfr (2.66 X 10⁺⁷ cc/sec) (5.5 scfm)

= 2.27 X 10⁺⁵ CPM

<u>NOTE</u>: Since there is no meter graduation at this point adjust the setpoint to 2.0 X 10⁺⁵ CPM.

ALERT ALARM SETPOINT: 100,000 CPM

Basis:	50% of	high	alarm	setpoin	t			
Calculation:	(2.0 X	10+5	CPM)	(0.5) =	1.0	X	10 ⁺⁵	CPM

198 115

:

1

2

HP-R-221B	(Gas)	1
-----------	-------	---

Location:	Fuel Handling Building E	xhaust Dust Downstream
	of Filter.	
Sensitivity:	3.55 X 10 ^{+7 CPM} /µCi/cc (Xe-133)

HIGH	ALARM	SETPOI	NT:	30,000	CP
	the state of the s				

Basis:

M

Alarm will activate if the Tech Spec limit of 1.2 X 10⁺⁵ M³/sec for gross gaseous activity and a meter error factor of 75%. Xe-133 MPC is 3 X 10⁻⁷ uCi/cc.

10 CFR Part 20, Appendix B. Ref: Appendix B, Section 2.3.2.

Calculation:

$$\frac{(1.2 \times 10^{+5} \text{ M}^{3}/\text{sec})(3.0 \times 10^{-7} \text{ }_{\text{u}}\text{Ci/cc})(3.55 \times 10^{+7} \text{ }_{\text{U}}\text{Ci/cc})(0.75)}{(2.66 \times 10^{+1} \text{ }_{\text{M}}^{3}/\text{sec})}$$

= 3.60 X 10" CPM

Since there is no meter graduation at this point NOTE: adjust the setpoint to 3.0 X 10⁺⁴ CPM.

ALERT	ALARM	SETPOINT:	15,000	CPM	

50% of high alarm setpoint. Basis:

 $(0.5)(3.0 \times 10^{+4}) = 1.5 \times 10^{+4}$ CPM. Calculation:

2105-1.12 Revision 5 06/20/78

HP-R-222 (Particulate)

Location:	Auxiliary Building Purge Air Exhaust Upstream
	of Filter
Sensitivity:	5.3 X 10 ⁺¹¹ CPM/µCi/cc (Sr-90) @ 8.5 SCFM, 1 in/hr

HIGH ALARM SETPOINT: 5,000 CPM

Basis:

5,000 CPM

Alarm will activate if 50% of the Tech Spec release rate limit of 0.63 uCi/sec at an exhaust flowrate of 50,715 CFM and a meter error factor of 75%. For this calculation we will use a 90% overall collection efficiency for the filter. In order to maintain isokinetic sampling when AH-V177 --is selected OPEN, the sampler flowrate will be maintained at 6.0 scfm.

Calculation:

 $\frac{(0.50)(0.63 \text{ uCi/sec})(5.3 \text{ X } 10^{+11} \text{ CPM}/\text{uCi/cc})(0.75)(8.5 \text{ scfm})}{(3.9 \text{ X } 10^{+7} \text{ cc/sec}) (0.90)(6.0 \text{ scfm})} = 5053 \text{ CPM}$ $\frac{\text{NOTE:}}{\text{NOTE:}} \text{ Since there is no meter graduation at this point,}$ $\frac{\text{adjust the setpoint to the next lower meter}}{\text{graduation, 5.0 X } 10^{+3} \text{ CPM}.}$

ALERT ALARM SETPOINT: 2500 CPM Basis: 50% of High Alarm Setpoint Calculation: 5.0 X 10⁺³ CPM) (0.5) = 2.5 X 10⁺³ CPM

2105-1.12 Revision 5 06/20/78

IP-R-222 (Iodine)		
Location:	Auxiliary Building Purge Air Exhaust Upstream	
	of Filter	
Sensitivity:	3.895 X 10 ^{+12 CPM} /min/µCi/cc (I-131) assuming	
	a 77% collection efficiency after 8 hours at	
	8.5 SCFM.	
IGH ALARM SETPOINT:	150,000 CPM	
Basis:	Alarm will activate in 10 minutes if 50% of	
	the Tech Spec release rate limit of 0.30 ${\ensuremath{\nu}}\ensuremath{Ci/sec}$	
	is exceeded for 7 days assuming a <u>+</u> 8.0% error	
	due (-8.0% most conservative) to flow variations	
	and a meter error factor of 75%. For this	
	calculation we will use a 90% overall collection	
	efficiency for the filter. In order to maintain	1
	isokinetic sampling when AH-V177 is selected, OPEN,	
	the sampler flowrate will be maintained at 6.0 scfm.	
	Ref: TMI-2 Tech Spec, Appendix B.	

Calculation:

(0.5)(0.3 uCi/sec)(3.895 X 10⁺¹² CPM/min/uCi/cc)(0.75-0.08)(10 min)(8.5 scfm) 3.9 X 10⁺⁷ cc/sec (0.9)(6.0 scfm)

= 1.57 X 10⁵ CPM

ALERT ALARM SETPOINT:	75,000 CPM
Basis:	50% of High Alarm Setpoint
Calculation:	(1.5 X 10 ⁺⁵ CPM)(0.5) = 7.5 X 10 ⁺⁴ CPM

198 118

:

HP-R-222 (Gas)	
Location:	Auxiliary Building Purge Air Exhaust Upstream
	of Filter
Sensitivity:	3.55 X 10 ⁺⁷ CPM/µCi/cc (Xe-133)

HIGH ALARM SETPOINT: 20,000 CPM

Basis:

Alarm will activate if the Tech Spec limit of 1.2 X 10^{+5} M³/sec for gross gaseous activity and a meter error factor of 75%. Xe-133 MPC is 3 X 10^{-7} µCi/cc. For this calculation we will use a 90% overall collection efficiency for the filter.

Ref: 10 CFR Part 20, Appendix B.

TMI-2 Tech Spec, Appendix B, Section 2.3.2.

Calculation:

 $\frac{(1.2 \times 10^{+5} \text{ M}^3/\text{sec})(3.0 \times 10^{-7} \text{ }_{\mu}\text{Ci/cc})(3.55 \times 10^{+7} \text{ }_{CPM/\mu}\text{Ci/cc})(0.75)}{(3.9 \times 10^{+1} \text{ M}^3/\text{sec}) (0.90)}$

= 2.72 X 10⁺⁴ CPM

NOTE: Since there is no meter graduation at this point,

adjust the setpoint to 2.0 X 10⁺⁴ CPM.

ALERT ALARM SETPOINT:

Basis: 50% of High Alarm Setpoint. Calculation: $(0.5) (2.0 \times 10^{+4}) = 1.0 \times 10^{+4}$ CPM).

HP-R-223 (Particulate)

Location: Spent Fuel Area (Moveable Monitor) Sensitivity: 5.3 x 10⁺¹¹CPM/µCi/cc at 1 in/Hr filter movement and 8.5 SCFM (SR-90)

High Alarm Setpoint: 1,100 CPM

Basis: MPC_a for restricted areas of 3 x 10⁻⁹ µCi/cc for unknown mixture of isotopes. Alarm will activate with MPC_a condition, assuming 75% meter error factor. Ref: 10CFR Part 20, Appendix B.

Calculation: 3 x 10⁻⁹ µCi/cc x 5.3 x 10¹¹ CPM/µCi/cc x .75 _= <u>1192.5</u> CPM.

Since there is no meter graduation at this point, adjust setpoint to 1000 CPM.

Alert Setpoint:	500 CPM
Basis:	50% of high alarm setpoint.

.....

:

-

HP-R-223 (Iodine)

	Location:	Spent Fuel Area (Moveable Monitor)
	Sensitivity:	3.895 X 10 ⁺¹² CPM/min µCi/cc (I-131) assuming
		a 77% collection efficiency at 8.5 SCFM after
		8 hours.
HIGH	ALARM SETPOINT:	230,000 CPM
	Basis:	MPC_a for restricted areas of 9 X $10^{-9} \mu Ci/cc$ for
		I-131 alarm will activate in 10 minutes with MPC
		condition assuming a \pm 8.0% error due to flow
1		variations and a 75% meter error factor.

Ref: 10 CFR Part 20, Appendix B.

Calculation:

 $(9 \times 10^{-9} - \mu Ci/cc)(3.895 \times 10^{+12} \text{ CPM/min } \mu Ci/cc)(10 \text{ min})(0.75-0.08)$ = 2.349 X 10⁺⁵ CPM

NOTE: Since there is no meter graduation at this point, adjust the setpoint to 2.3 X 10⁺⁵ CPM.

ALERT ALARM SETPOINT: 115,000 CPM

Basis:	50% of High Alarm Setpoint
Calculation:	(2.3 X 10 ⁵ CPM)(0.5) = 1.15 X 10 ⁵ CPM.

:

HP-R-223 (Gas)

Location:	Spent Fuel Area (Moveable Monitor)	weable Monitor).
Sensitivity:	3.55 x 10 ⁷ CPM/µCi/cc (Xe-133).	cc (Xe-133).

High Alarm Setpoint: 260 CPM

Basis:	MPCa for unrestricted areas of 1 x 10^{-5} µCi/cc for
	Xe-133. Assumes meter error factor of 75%.

Calculation: (1 x 10⁻⁵ µCi/cc) (3.55 x 10' CPM/µCi/cc) (.75) = 266.25 CPM.

Since there is no meter graduation at this point, adjust setpoint to next lower tens CPM, 260 CPM.

Alert Setpoint: 130 CPM.

Basis:

50% of high alarm setpoint.

HP-R-224 (Particulate)

Location: Auxiliary Building (Moveable Monitor) Sensitivity: 5.3 x 10⁺¹¹CPM/µCi/cc at 1 in/Hr filter movement and 8.5 SCFM (SR-90)

High Alarm Setpoint: 1100 CPM

Basis: MPC_a for restricted areas of $3 \times 10^{-9} \mu$ Ci/cc for unknown mixture of isotopes. Alarm will activate with MPC_a condition, assuming 75% meter error factor. Ref: 10CFR Part 20, Appendix B. Calculation: $(3 \times 10^{-9} \mu$ Ci/cc) (5.3 x 10¹¹ CPM/ μ Ci/cc) (.75) = 1192.5 CPM Since there is no meter graduation at this point, adjust setpoint to next lower hundreds CPM, 1100 CPM.

Alert Setpoint: 550 CPM

Basis: 50% of high alarm setpoint.

43.0

198 123

:

HP-R-224 (Iodine) Location: Auxiliary Building (Moveable Monitor) Sensitivity: 3.895 X 10⁺¹² CPM/min μCi/cc (I-131) assuming a 77% collection efficiency at 8.5 SCFM after 8 hours.
HIGH ALARM SETPOINT: 230,000 CPM Basis: MPC_a for restricted areas of 9 X 10⁻⁹ μCi/cc for I-131 alarm will activate in 10 minutes with MPC_a condition assuming a + 8.0% error due to flow

variations and a 75% meter error factor.

Ref: 10 CFR Part 20, Appendix B.

Calculation:

 $(9 \times 10^{-9} \mu Ci/cc)(3.895 \times 10^{+12} \text{ CPM}/\text{min } \mu Ci/cc)(10 \text{ min})(0.75-0.08)$ = 2.349 X 10⁺⁵ CPM

<u>NOTE</u>: Since there is no meter graduation at this point, adjust the setpoint to 2.3 X 10⁺⁵ CPM.

ALERT ALARM SETPOINT: 115,000 CPM

Basis: 50% of High Alarm Setpoint Calculation: $(2.3 \times 10^5 \text{ CPM})(0.5) = 1.15 \times 10^5 \text{ CPM}.$

198 124

-

.

HP-R-224 (Gas)

Location: Auxiliary Building (Moveable Monitor). Sensitivity: 3.55 x 10⁷ CPM/µCi/cc (Xe-133).

High Alarm Setpoint: 260 CPM

Basis: MPCa for unrestricted areas of 1 x 10^{-5} µCi/cc for Xe-133. Assumes meter error factor of 75%.

Calculation:

 $(1 \times 10^{-5} \mu Ci/cc) (3.5 \times 10^{7} CPM/\mu Ci/cc) (.75) =$ 262.5 CPM. Since there is no meter graduation at this point, -round setpoint to next lower tens CPM, 260.

Alert Setpoint: 130 CPM.

Basis:

50% of high alarm setpoint.

:

:

.....

:

÷

IP-R-225 (Particulate)	
Location:	Reactor Building Purge Exhaust A
Sensitivity:	5.3 X 10 ⁺¹¹ CPM/uCi/cc (SR-90 @ 8.5 SCFM, 1 in/hr.

HIGH ALARM SETPOINT:10,000 CPMBasis:Alarm will activate if 50% of the Tech Spec
release rate limit of 0.63 µCi/sec at an exhaust
flowrate of 25,000 CFM and a meter error factor
of 75%.

Calculation:

 $\frac{(0.50)(0.63 \ \mu Ci/cc)(5.3 \ X \ 10^{+11} \ CPM/\mu Ci/cc)(0.75)}{(1.18 \ X \ 10^{+7} \ cc/sec)} = 10,600.0 \ CPM$

NOTE: Since there is no meter graduation at this point, adjust the setpoint to the next lower meter graduation, 1.0 X 10⁺⁴ CPM.

ALERT ALARM SETPOINT:	5000 CPM
Basis:	50% of High Alarm Setpoint
Calculation:	(1.0 X 10 ⁺⁴ CPM)(0.5) = 5.0 X 10 ⁺³ CPM

-

HP-R-225 (Iodine)

Location:

Sensitivity:

Reactor Building Purge Exhaust A 3.895 X 10^{+12 CPM}/min-uCi/cc (I-131) assuming a 77% collection efficiency after 8 hours at 8.5 SCFM.

HIGH ALARM SETPOINT:

200,000 CPM

Basis:

Alarm will activate in 10 minutes if 50% of the Tech Spec release rate limit of 0.3 μ Ci/sec is exceeded for 7 days assuming a <u>+</u> 8.0 % error due (-8.0% most conservative) to flow variations and a meter error factor of 75%.

Ref: TMI-2 Tech Spec, Appendix B.

Calculation:

(0.5)(0.3 uCi/sec)(3.895 X 10⁺¹² CPM/min-uCi/cc)(0.75-0.08)(10 min) 1.18 X 10⁺⁷cc/sec

= 3.3 X 10⁺⁵ CPM

NOTE: Since there is no meter graduation at this point, adjust the setpoint to 2.0 X 10⁺⁵ CPM.

ALERT ALARM SETPOINT: 100,000 CPM

Basis:	50% of High Alarm Setpoint
Calculation:	(2.0 X 10 ⁺⁵ CPM)(0.5) = 1.0 X 10 ⁺⁵ CPM

47.0

HP-R-225 (Gas)

Location:	Reactor Building	g Purge	Exhaust A
Sensitivity:	3.55 X 10+7 CPM	/µCi/cc	(Xe-133)

HIGH ALARM SETPOINT:

80,000 CPM

Basis:

Alarm will activate if the Tech Spec limit of 1.2 X 10^{+5} M³/sec for gross gaseous activity and a meter error factor of 75% Xe-133 MPC is 3 X 10^{-7} µCi/cc.

Ref: 10 CFR Part 20, Appendix B.

TMI-2 Tech Specs, Appendix B, Section 2.3.2.a.

Calculation:

 $\frac{(1.2 \times 10^{+5} \text{ M}^3/\text{sec})(3.0 \times 10^{-7} \text{ }_{\text{u}}\text{Ci/cc})(3.55 \times 10^{+7} \text{ }_{\text{CPM}/\text{u}}\text{Ci/cc})(0.75)}{1.18 \times 10^{+1} \text{ }_{\text{M}}^3/\text{sec})}$

= 8.12 X 10⁺⁴ CPM

<u>NOTE</u>: Since there is no meter graduation at this point, adjust the setpoint to 8.0 X 10⁺⁴ CPM.

ALERT ALARM SETPOINT: 40,000

Basis: 50% of High Alarm Setpoint Calculation: $(0.5)(8.0 \times 10^{+4}) = 4.0 \times 10^{+14}$ CPM

-

2

HP-R-226 (Pa	rticulate)	
--------------	------------	--

Location:	. Reactor Building Purge Exhaust B
Sensitivity:	5.3 X 10 ⁺¹¹ CPM/µCi/cc (SR-90 @ 8.5 SCFM, 1 in/hr.

10,000 CPM HIGH ALARM SETPOINT:

Basis:

Alarm will activate if 50% of the Tech Spec release rate limit of 0.63 µCi/sec at an exhaust flowrate of 56,450 CFM and a meter error factor of 75%.

Calculation:

$$\frac{(0.50)(0.63 \ \text{wCi/cc})(5.3 \ \text{X} \ 10^{+11} \ \text{CPM}/\text{wCi/cc})(0.75)}{(1.18 \ \text{X} \ 10^{+7} \ \text{cc/sec})} = 10,600.0 \ \text{CPM}$$

NOTE:	Since there is no meter graduation at this point,
	adjust the setpoint to the next lower meter graduation,
	1.0 X 10 ⁺⁴ CPM.

ALERT ALARM SETPOINT:	5000 CPM
Basis:	50% of High Alarm Setpoint
Calculation:	(1.0 X 10 ⁺⁴ CPM)(0.5) = 5.0 X 10 ⁺³ CPM

49.0

HP-R-226 (Iodine)

Location:	Reactor Building Purge Exhaust B
Sensitivity:	3.895 X 10 ^{+12 CPM} /min-µCi/cc (I-131) assuming
	a 77% collection efficiency after 8 hours at
	8.5 SCFM.

HIGH ALARM SETPOINT: 200,000 CPM

Basis:

Alarm will activate in 10 minutes if 50% of the Tech Spec release rate limit of 0.3 μ Ci/sec is exceeded for 7 days assuming a <u>+</u> 8.0 % error due (-8.0% most conservative) to flow variations and a meter error factor of 75%.

Ref: TMI-2 Tech Spec, Appendix B.

Calculation:

(<u>0.5)(0.3 uCi/sec)(3.895 X 10⁺¹² CPM/min-uCi/cc)(0.75-0.08)(10 min)</u> 1.18 X 10⁺⁷cc/sec

= 3.3 X 10⁺⁵ CPM

<u>NOTE</u>: Since there is no meter graduation at this point, adjust the setpoint to 2.0 X 10⁺⁵ CPM.

ALERT ALARM SETPOINT:	100,000 CPM
Basis:	50% of High Alarm Setpoint
Calculation:	(2.0 X 10 ⁺⁵ CPM)(0.5) = 1.0 X 10 ⁺⁵ CPM

198 130

HP-R-226 (Gas)

Location:

Reactor Building Purge Exhaust B 3.55 X 10⁺⁷ CPM/µCi/cc (Xe-133)

HIGH ALARM SETPOINT:

Sensitivity:

80,000 CPM

Basis:

Alarm will activate if the Tech Spec limit of 1.2 X 10^{+5} M³/sec for gross gaseous activity and a meter error factor of 75% Xe-133 MPC is 3 X 10^{-7} uCi/cc.

Ref: 10 CFR Part 20, Appendix B.

TMI-2 Tech Specs, Appendix B, Section 2.3.2.a.

Calculation: - --

$$\frac{(1.2 \times 10^{+5} \text{ M}^{3}/\text{sec})(3.0 \times 10^{-7} \text{ }_{\text{u}Ci/cc})(3.55 \times 10^{+7} \text{ }_{\text{U}Ci/cc})(0.75)}{1.18 \times 10^{+1} \text{ M}^{3}/\text{sec})}$$

= 8.12 X 10⁺⁴ CPM

<u>NOTE</u>: Since there is no meter graduation at this point, adjust the setpoint to 8.0 X 10⁺⁴ CPM.

ALERT ALARM SETPOINT: 40,000

Basis:

50% of High Alarm Setpoint

Calculation: $(0.5)(8.0 \times 10^{+4}) = 4.0 \times 10^{+14} \text{ CPM}$

=

HP-R-227 (Particulate)

Location:

Reactor Building

Sensitivity: HIGH ALARM SETPOINT: 5.3 X 10^{+11 CPM}/µCi/cc (Sr-90) @ 8.5 SCFM, 1 in/hr 5 X 10⁴ CPM

Basis:

Alarm will activate at 25% of the equilibrium concentration of Kr-88 and Rb-88 in the Reactor Building due to a 1 gpm reactor coolant leak at 0.1% failed fuel. Reactor Building Volume: 5.95×10^{10} , Reactor Coolant Kr-88 activity: .28 μ Ci/cc. Kr-88 half-life: 2.8 hours. Fraction of Rb-88 filterables: 10% (due to unknown particle size).

Calculation: Production rate of Kr-88 at equilibrium:

 $1 \text{ gal/min } X 63.3 \frac{\text{cc/sec}}{\text{gal/min}} X 2.8 \ \mu\text{Ci/cc } X 3.7 \ X 10^4 \text{ atoms/sec/} \mu\text{Ci}$ $X \frac{2.8 \text{ hours } X 3600 \text{ sec/hr}}{.693} = 9.54 \ X 10^9 \text{ atoms/sec}$ At equilibrium production of Kr-88 = decay of Kr-88 = production of Rb-88 - decay of Rb-88. $9.54 \ X 10^9 \text{ atoms/sec} + 3.7 \ X 10^4 \text{ atoms/sec/} \mu\text{Ci} = 2.58 \ X 10^5 \ \mu\text{Cu}$ $2.58 \ X 10^5 \ \mu\text{Ci/cs} .95 \ X 10^{10} \ \text{cc} = 4.336 \ X 10^{-6} \ \mu\text{Ci/cc}$ $25\% \text{ of } 1.08 \ X 10^{-6} \ \mu\text{Ci/cc} = 1.08 \ X 10^{-6} \ \mu\text{Ci/cc}$ $1.08 \ X 10^{-7} \ \mu\text{Ci/cc} \ X 5.3 \ X 10^{+11} \ \text{CPM}/ \mu\text{Ci/cc} = 5.274 \ X 10^4 \ \text{CPM}.$ $\underline{\text{NOTE:}} \qquad \text{Since there is no meter graduation at this point,}$ $adjust setpoint to 5.0 \ X 10^4 \ \text{CPM}.$ $\underline{\text{ALERT SETPOINT:}} \qquad 2.5 \ X 10^4 \ \text{CPM}$

Basis:

50% of High Alarm Setpoint (Changing next lower meter graduation. 198

HP-R-227 (Iodine)

Location:	Reactor Building	
Sensitivity:	5.83 X 10 ⁺¹¹ CPM/min-µCi/cc (I-131) a 98% collection	
	efficiency at 8.5 SCFM after 8 hours.	

HIGH ALARM SETPOINT:

Basis:

5 X 10³ CPM

Alarm will activate within four hours after the start of a 2 GPM reactor coolant leak rate with 0.1% failed fuel. Reactor Building Volume: 5.95 X 10¹⁰ cc. Reactor Coolant Iodine Activity: .33 µCi/cc. Fraction of Iodine available for collection: 82% Iodine Collection Efficiency: 78% Average Concentration: 50% of Maximum Concentration. Meter error factor: 75%. Ref: TMI-1 FSAR, Section II

Calculation:

2 gal/min X 3.8 X 10³ cc/gal X 1 min X .33 µCi/cc X .75 X .78 X .82 X .50 X 1 min X 5.83 X 10¹¹ CPM/min/ μ Ci/cc/5.95 X 10¹⁰ cc = 5894 CPM.

Choosing next lower meter graduation: 5 X 10³ CPM.

ALERT SETPOINT:

2.0 X 10³ CPM

Basis:

1/2 of High Alarm Setpoint (choosing next lower meter graduation.

53.0

HP-R-227 (Gas)

Location:	Reactor Building
Sensitivity:	3.55 X 10 ⁷ CPM/uCi/cc (Xe-133)

HIGH ALARM SETPOINT:

Basis:

2 X 10⁴ CPM

Alarm will activate within four hours after the start of a 2 GPM reactor coolant leak, assuming 0.1% failed fuel. Volume of Reactor Building: 5.95 X 10¹⁰ cc. Reactor Coolant Xe-133 activity: 26 µCi/cc. Meter error factor: 75%.

Ref: TMI-1 FSAR, Section II.

Calculation: _ _ _

2 gal/min X 3.8 X 10^3 cc/gal X 240 min X 26 μ Ci/cc X 75% X 3.55 X 10^7 CPM/ μ Ci/cc + 5.95 X 10^{10} cc = 2.12 X 10^4 CPM

Choosing next lower meter graduation: 2 X 10⁴ CPM.

ALERT SETPOINT:

1 X 10⁴ CPM

Basis:

50% of High Alarm Setpoint

HP-R-228 (Particulate)

Location:	Auxiliary Building Purge Air Exhaust Downstream
	of Filter
Sensitivity:	5.3 X 10 ^{+11 CPM} /µCi/cc (Sr-90) @ 8.5 SCFM, 1 in/hr.

HIGH ALARM SETPOINT:

Basis:

4000 CPM

Alarm will activate if 50% of the Tech Spec release rate limit of 0.63 µCi/sec at an exhaust flowrate of 67,000 CFM and a meter error factor of 75%. In order to maintain isokinetic sampling sampler flowrate will be maintained at 6.5 scfm.

Calculation:

 $(0.50)(0.63 \ \mu Ci/sec)(5.3 \ X \ 10^{+11} \ CPM/\mu Ci/cc)(0.75)(8.5scfm) = 4198$ (3.9 X 10⁺⁷ cc/sec)(6.5 scfm)

Since there is no meter graduation at this point, NOTE: adjust the setpoint to 4.0 \times 10⁺³ CPM.

ALERT ALARM SETPOINT:	2000 CPM
Basis:	50% of High Alarm Setpoint
Calculation	$(4.0 \times 10^{+3} \text{ CPM}) (0.5) = 2.0 \times 10^{+3} \text{ CPM}$

2105-1.12 Revision 5 06/20/78

HP-R-228 (Iodine)

Basis:

HIGH

Location:	Reactor Building Purge Exhaust		
Sensitivity:	3.895 X 10 ⁺¹² CPM/min/uCi/cc (I-131) assuming		
	a 77% collection efficiency after 8 hours at 8.5 SCFM.		
ALARM SETPOINT:	100,000 CPM		

Alarm will activate in 10 minutes if 50% of the Tech Spec release rate limit of 0.30 µCi/sec is exceeded for 7 days assuming a <u>+</u> 8.0% error due (-8.0% most conservative) to flow variations and a meter error factor of 75%. In order to maintain isokinetic sampling, the sampler flowrate will - -be maintained at 6.5 scfm.

Ref: TMI-2 Tech Spec, Appendix B.

Calculation:

(0.5)(0.3 <u>uCi/sec)(3.895 X 10⁺¹² CPM/min/uCi/cc)(0.75-0.08)(10 min)(8.5 scfm)</u> (3.9 X 10⁺⁷ cc/sec)(6.5 scfm)

= 1.3 X 10⁺⁵ CPM

ALERT ALARM SETPOINT: 50,000 CPM

Basis: 50% of High Alarm Setpoint

Calculation: (1.0 X 10⁺⁵ CPM)(0.5) = 5 X 10⁺⁴ CPM

198 136

=

-22

:

HP-R-228 (Gas)

Location:	Reactor	Bui	lding	Purge	Exhaust
Sensitivity:	3.55 X	10+7	CPM/	Ci/cc	(Xe-133)

HIGH ALARM SETPOINT:

Basis:

20.000 CPM

Alarm will activate if the Tech Spec limit of 1.2 X 10^{+5} M³/sec for gross gaseous activity and a meter error factor of 75%. Xe-133 MPC is 3 X 10^{-7} µCi/cc.

Ref: 10 CFR Part 20, Appendix B.

TMI-2 Tech Spec, Appendix B, Section 2.3.2.

Calculation:

 $\frac{(1.2 \times 10^{+5} \text{ M}^{3}/\text{sec})(3.0 \times 10^{-7} \text{ }_{\text{u}Ci/cc})(3.55 \times 10^{+7} \text{ }^{\text{CPM}}/\text{u}Ci/cc})(0.75)}{(3.9 \times 10^{+1} \text{ }^{\text{M}}/\text{sec})}$

= 2.45 X 10⁺⁴ CPM

<u>NOTE</u>: Since there is no meter graduation at this point, adjust the setpoint to 2.0 X 10⁺⁴ CPM.

ALERT ALARM SETPOINT:

Basis: 50% of High Alarm Setpoint.

Calculation: $(0.5) (2.0 \times 10^{+4}) = 1.0 \times 10^{+4} \text{ CPM}).$

:

HP-R-229 (Particulate)

Location:	Reactor Building Hydrogen Purge Exhaust
Sensitivity:	5.3 X 10 ⁺¹¹ CPM/µCi/cc (SR-90) @ 8.5 SCFM, 1 in/hr.

HIGH ALARM SETPOINT:

160,000 CPM

Basis:

Alarm will activate if 50% of the Tech Spec release rate limit of 0.63 μ Ci/Sec at an exhaust flowrate of 150 CFM and a meter factor of 75%.

Calculation:

<u>NOTE</u>: Since there is no meter graduation at this point, adjust the setpoint to the next meter graduation, 1.6 X 10⁺⁵ CPM.

LE	RT ALARM SETPOINT:	80,000 CPM
	Basis:	50% of high alarm setpoint
	Calculation:	(1.6 X 10 ⁺⁵ CPM)(0.5) = 8 X 10 ⁺⁴ CPM.

HP-R-229 (Iodine)

Location:	Reactor Building Hydrogen Purge Exhaust
Sensitivity:	3.895 X 10 ⁺¹² CPM/min/uCi/cc (I-131) assuming
	a 77% collection efficiency after 8 hours
	at 8.5 SCFM.

HIGH ALARM SETPOINT: 400,000 CPM

Basis:

Alarm will activate in 1 minute if 0.5% of the Tech Spec release rate limit of 0.30 μ Ci/sec is exceeded for 7 days assuming a \pm 8.0% error due (-8.0% most conservative) to flow variations and a meter error factor of 75%.

Ref: TMI-2 Tech Spec, Appendix B, Section 2.3.2.b

Calculation:

(0.005)(0.30 uCi/sec)(3.895 X 10⁺¹² CPM/min/uCi/cc)(0.75-0.08)(1 min) 7.08 X 10⁺⁴ cc/sec

= 5.5 X 10⁺⁵ CPM

<u>NOTE</u>: Since there is no meter graduation at this point adjust the setpoint to 4.0 X 10⁺⁵ CPM.

ALERT ALARM SETPOINT:	200,000 CPM
Basis:	50% of high alarm setpoint
Calculation:	(4.0 X 10 ⁺⁵ CPM)(0.5) = 2.0 X 10 ⁺⁴ CPM

59.0

HP-R-229 (Gas)

Location:	Reactor Building Hydrogen Purge Exhaust
Sensitivity:	3.55 X 10 ⁺⁷ CPM/µCi/cc (Xe-133)

HIGH ALARM SETPOINT:

Basis:

120,000 CPM

Alarm will activate if 1% of the Tech Spec limit of 1.2 X 10⁺⁵ M³/sec for gross gaseous activity and a meter error factor cf 75%. Xe-133 MPC is 3 X 10⁻⁷ µCi/cc.

Ref: 10 CFR Part 20, Appendix B.

TMI-2 Tech Spec, Appendix B, Section 2.3.2.a

Calculation:

Basis:

 $\frac{(0.01)(1.2 \times 10^{+5} \text{ M}^3/\text{sec})(3.0 \times 10^{-7} \text{ }_{\text{u}}\text{Ci/cc})(3.55 \times 10^{+7} \text{ }_{\text{CPM}/\text{u}}\text{Ci/cc})(0.75)}{(7.08 \times 10^{-2} \text{ }_{\text{M}}^3/\text{sec})}$

= 1.35 X 10⁺⁵ CPM

Since there is no meter graduation at this point NOTE: adjust the setpoint to 1.2 X 10⁺⁵ CPM.

ALERT ALARM SETPOINT: 60,000 CPM

50% of high alarm setpoint.

 $(0.5)(1.2 \times 10^{+5} \text{ CPM}) = 6.0 \times 10^{+5} \text{ CPM}.$ Calculation:

WDG-R-1480 (Gas)	
Location:	Waste Gas Discharge
Sensitivity:	3.55 X 10 ⁺⁷ CPM/µCi/cc (Xe-133)

HIGH ALARM SETPOINT:

Basis:

4.0 X 10⁺⁵ CPM

Tech Spec Release Rate Limit of 2.4 X 10^{+3} M³/sec for gas decay tanks with less than 45 days hold up time. Maximum design flow rate of 100 SCFM (4.72 X 10^{-2} M³/sec) is assumed. A meter error factor of 75% is assumed, and the MPC_a for Xe-133 is 3 X 10^{-7} µCi/cc.

Ref:

10 CRF Part 20, Appendix B TMI-2 Tech Spec, Appendix B, Specification 2.3.2.e

Calculation:

 $\frac{(2.4 \times 10^{+3} \text{ M}^3/\text{sec})(3.0 \times 10^{-7} \text{ }_{\text{uCi/cc}})(3.55 \times 10^{+7} \text{ }_{\text{CPM}/\text{uCi/cc}})(0.75)}{(4.72 \times 10^{-2} \text{ }_{\text{M}}^3/\text{sec})}$

= 4.06 X 10⁵ CPM

NOTE: Since there is no meter graduation at this point,

adjust the setpoint to the next lower meter graduation, 4.0×10^5 CPM.

ALERT ALARM SETPOINT: 2.0 X 10⁵ CPM

Basis:

50% of High Alarm Setpoint

WDG-R-1485 (Gas)

Location: Sensitivity:

HIGH ALARM SETPOINT:

Basis:

Waste Gas Decay Tank 1A Discharge 3.55 X 10^{+7} CPM/µCi/cc (Xe-133) 3.0 X 10^5 CPM.

The Waste Gas Filter, WDG-F-1 has a collection efficiency of 99.87% for particles larger than 0.3 micron and 99.9% for radioactive iodine in air. For this calculation we will use a 90% overall collection efficiency for the filter. The Tech Spec Release Rate Limit of 2.4 X 10^{+3} M^3 /sec for gas decay tanks with less than 45 days holdup time. Maximum design flow rate of 100 SCFM (4.72 X 10^{-2} M^3 /sec is assumed. A meter error factor of 75% is assumed and the MPC, for

error factor of 75% is assumed and the MPC_a for Xe-133 is 3.0 X 10^{-7} µCi/cc.

Ref: 10 CFR Part 20, Appendix B.

TMI-2 Tech Specs, Appendix B, Specification 2.3.2.e

Basis of WDG-R-1480 setpoint

Calculation: $\frac{(2.4 \times 10^{+3} \text{M}^{3}/\text{sec})(3.0 \times 10^{-7} \text{uCi/cc}) (3.55 \times 10^{+7} \text{ CPM}/\text{uCi/cc})(0.75)(0.9)}{(4.72 \times 10^{-2} \text{ M}^{3}/\text{sec})}$

= 3.65 X 10⁺⁵ CPM

<u>NOTE</u>: Since there is no meter graduation at this point, adjust lower meter graduation at 3.0 X 10⁵ CPM.

 $(3.0 \times 10^5 \text{ CPM})(0.50) = 1.5 \times 10^5 \text{ CPM}$

ALERT ALARM SETPOINT: 1.5 X 10⁵ CPM

Basis:

50% of High Alarm Setpoint

62 A

Calculation:

198 142

WDG-R-1486 (Gas)

Location: Sensitivity:

HIGH ALARM SETPOINT:

Basis:

Waste Gas Decay Tank 1B Discharge 3.55 X 10^{+7} CPM/ μ Ci/cc (Xe-133) 3.0 X 10^5 CPM.

The Waste Gas Filter, WDG-F-1 has a collection efficiency of 99.87% for particles larger than 0.3 micron and 99.9% for radioactive iodine in air. For this calculation we will use a 90% overall collection efficiency for the filter. The Tech Spec Release Rate Limit of 2.4 X 10^{+3} M^3 /sec for gas decay tanks with less than 45 days holdup time. Maximum design flow rate of 100 SCFM (4.72 X 10^{-2} M^3 /sec is assumed. A meter error factor of 75% is assumed and the MPC_a for Xe-133 is 3.0 X 10^{-7} µCi/cc.

Ref: 10 CFR Part 20, Appendix B.

TMI-2 Tech Specs, Appendix B, Specification
2.3.2.e

Basis of WDG-R-1480 setpoint

Calculation:

 $\frac{(2.4 \times 10^{+3} \text{ M}^{3}/\text{sec})(3.0 \times 10^{-7} \text{ }_{\text{u}}\text{Ci/cc}) (3.55 \times 10^{+7} \text{ }_{\text{CPM}/\text{u}}\text{Ci/cc})(0.75)(0.9)}{(4.72 \times 10^{-2} \text{ }_{\text{M}}^{3}/\text{sec})}$

= 3.65 X 10⁺⁵ CPM

<u>NOTE</u>: Since there is no meter graduation at this point, adjust lower meter graduation at 3.0 X 10⁵ CPM.

(3.0 X 10⁵ CPM)(0.50) = 1.5 X 10⁵ CPM

ALERT ALARM SETPOINT: 1.5 X 10⁵ CPM

Basis:

50% of High Alarm Setpoint

Calculation:

198 143

-

-

2

VA-R-748 (Gas)

Location:

Sensitivity:

Condenser Vacuum Pump Exhaust 3.55 X 10⁺⁷ CPM/µCi/cc (Xe-133) 2000 CPM

HIGH ALARM SETPOINT:

Basis:

Alarm will activate at a release rate of 0.024 µCi/sec of I-131 (Quarterly average Tech Spec Limit requiring a 30 day letter to the NRC). Xe-133 to I-131 ratio with failed fuel assumed to be 80, vacuum pump flow rate is 1.88 X 10⁴ cc/sec and a meter error factor of 75% is included. Ref: TMI-2 Tech Spec, Appendix B, Specification 2.3.2.h.

Calculation:

 $\frac{(0.024 \text{ uCi/sec})(80)(3.55 \text{ X } 10^{+7} \text{ CPM}/\text{uCi/cc})(0.75)}{(1.88 \text{ X } 10^4 \text{ cc/sec})}$

= 2719 CPM

<u>NOTE</u>: Since there is no meter graduation at this point, adjust the setpoint to the next lower meter graduation, 2000 CPM.

ALERT ALARM SETPOINT: 1000 CPM

Basis:

50% of High Alarm Setpoint

64.0

MU-R-720	Primary	Coolant	Letdown	(Gross)	ĥ
and the second se				10.0001	

	Location:	Makeup Tank Corridor
	Sensitivity:	1.02 X 10 ^{8 CPM} /µCi/cc
HIGH	ALARM SETPOINT:	5.0 X 10 ⁵ CPM
	Basis:	Total activity of primary coolant at 1% failed
		fuel is 360 µCi/cc.
	Calculation:	$(360 \ \mu Ci/cc)(1.02 \ X \ 10^8 \ CPM/\mu Ci/cc) = 3.67 \ X \ 10^{10} \ CPM$
		NOTE: Since this is above the range of the
		monitor, conservatively set the setpoint
		at 5.0 X 10 ⁵ CPM.
LER	T ALARM SETPOINT:	2.5 X 10 ⁵ CPM.
	Basis:	Based on Tech Spec Limit of 130 E vi/cc which
		will insure that a whole body dose of less than
		0.5 REM will occur at the site boundary should a
		steam generator tube rupture accident occur
		(assuming E = 1 Mev)
	Calculation:	$(130 \ \mu Ci/cc)(1.02 \ X \ 10^8 \ CPM/\mu Ci/cc) = 1.32 \ X \ 10^{10} \ CPM$
		NOTE: Since this is above the range of the
		monitor, conservatively set the setpoint
		at 2.5 X 10 ⁵ CPM.

198 145

......

-

-

MU-R-720 Primary Coolant Letdown (Analyze)

Location:	Makeup Tank Corridor
Sensitivity:	8.2 X 10 ^{5 CPM} /µCi/cc
HIGH ALARM SETPOINT	<u>[</u> : 5.0 X 10 ⁵ срм
Basis:	Total activity of primary coolant at 1% failed
	fuel is 360 µCi/cc.
Calculation:	(360 µCi/cc)(8.2 X 10 ⁵ CPM/µCi/cc) = 2.95 X 10 ⁺⁸ CPM
	NOTE: Since this is above the range of the
	monitor. conservatively set the setpoint
	at 5.0 X 10 ⁵ CPM.
ALERT ALARM SETPOIN	<u>I:</u> 2.5 X 10 ⁵ CPM.
Basis:	Based on Tech Spec Limit of 130 E µCi/cc which
	will insure that a whole body dose of less than
	0.5 REM will occur at the site boundary should a
	steam generator tube rupture accident occur
	(assuming E = 1 Mev)
Calculation:	(130 µCi/cc)(8.2 X 10 ^{5 CPM} /µCi/cc) = 1.06 X 10 ⁸ CPM
	NOTE: Since this is above the range of the
	monitor, conservatively set the setpoint at 2.5 X 10 ⁵ CPM.

IC-R-1091

1

Location: Intermediate Cooling Water Letdown Cooler MU-C-18.

Sensitivity: 9.03x 10⁺⁷ CPM/(µCi/cc) (Cs¹³⁷)

HIGH ALARM SETPOINT: 5000 CPM

Basis: 10 times background to provide positive identification of

leakage. (Background = 500 CPM)

Calculation: (10) (500 CPM) = 5000 CPM

Alarm Concentration: $\frac{500 \text{ CPM}}{9.03 \times 10^{+7} \text{ CPM}/(\mu \text{Ci/cc})} = 5.53 \times 10^{-5} \mu \text{Ci/cc}$

ALERT ALARM SETPOINT: 1000 CPM

Basis: 2 times background to provide early detection of leakage. Calculation (2) (500 CPM = 1000 CPM)

Marm Concentration:
$$\frac{1000 \text{ CPM}}{9.03 \text{ x}^{17} \text{ CPM}/(\mu\text{Gi/cc})} = 1.107 \text{ x} 10^{-5} \mu\text{Gi/cc}$$

~

3

-

IC-R-1092

Alarm

Location: Intermediate Cooling Water Letdown Cooler MU-C-1A Sensitivity: 9.03 x 10⁺⁷ CPM/(µCi/cc) (Cs¹³⁷) HIH ALARM SETPOINT: 5000 CPM

Basis: 10 times background to provide positive identification of leakage. (Background = 500 CPM).

Calculation: (10) (500 CPM) = 5000 CPM

Concentration:
$$\frac{5000 \text{ CPM}}{9.03 \times 10^{+7} \text{ CPM}/(\mu\text{C/cc})} = 5.53 \times 10^{-5} \mu\text{Ci/cc}$$

ALERT ALARM SETPOINT: 1000 CPM

Basis: 2 times background to provide early detection of leakage. Calculation: (2) (500 CPM) = 1000 CPM

Alarm Concentration: $\frac{1000 \text{ CPM}}{9.03 \times 10^{17} \text{ CPM}/(\mu \text{Ci/ci})} = 1.107 \times 10^{-5} \text{ uCi/cc}$

-

IC-P-1093

Location: Intermediate Cooling Water Cooler Outlet Sensitivity: 9.03 x 10⁺⁷ CPM/ (uCi/cc) (Cs ¹⁵⁷) HIGH ALARM SETPOINT: 2000 CPM

Basis: 10 times background to provide positive identification

of leakage. (Background = 200 CPM).

Calculation: (10) (200 CPM) = 2000 CPM.

Alarm Concentration: $\frac{2000 \text{ CPM}}{9.03 \times 10^{+7} \text{ C}^{2}\text{M/}} = 2.215 \times 10^{-5} \text{ }\mu\text{Ci/cc}$

ALERT ALARM SETPOINT: 4000 CPM

Basis: 2 times background to provide early detection of leakage. Calculation: (2) (200 CPM) = 400 CPM

Alarm Concentration: $\frac{4000 \text{ CPM}}{4.03 \times 10^{-7} \text{ CPM}/(\mu \text{Ci/cc})} = 4.429 \times 10^{-6} \mu \text{ Ci/cc}$
:

....

WDL-R-1311

Location: Liquid Effluent Plant No. 2.

Sensitivity: 9.23 x 10⁷ CPM/µc/cc. (Based on ¹³⁷Cs)

During Release see H.P.P. 1621.2 Releasing Radioactive Liquid

Waste, for determination of setpoints.

<u>NOTE</u>: Setpoint will vary depending on conentrations to be discharged. During Periods of Non-Release.

HIGH ALARM SETPOINT: 9000 CPM

Basis: MPC for Iodine-131, $3 \times 10^{-7} \mu$ Ci/cc minimum dilution

factor of 50 GPM release rate 17100 GPM MDCT flow.

<u>Calculation</u>: $3 \times 10^{-7} \mu Ci/\mu \times 9.23 \times 10^{+7} \frac{CPM}{\mu Ci/cc} \times \frac{17100 \text{ GPM}}{50 \text{ GPM}} = 9469 \text{ CPM}$

Since there is no meter graduation at 9469 CPM 9000 CPM is the setpoint.

ALERT SETPOINT: 1800 CPM

<u>Basis</u>: Maximum allowable count rate due to contamination before decontaimination is necessary.

:

DO-R-3399

Location: Decay Heat Closed Cooling Water Loop A.

Sensitivity: 9.03x 10⁺⁷ CPM/(uCi/cc) (Cs¹³⁷)

HIGH ALARM SETPOINT: 2000 CPM

Basis: 10 times background to provide positive identification of

leakage. (Background = 200 CPM)

Calculation: (10) (200 CPM) = 2000 CPM

Alarm Concentration: $\frac{2000 \text{ CPM}}{9.03 \times 10^{+7} \text{ CPM}/(\mu \text{Ci/cc})} = 2.215 \times 10^{-5} \mu \text{Ci/cc}$

ALERT ALARM SETPOINT: 400 CPM

Basis: 2 times background to provide early detection of leakage. Calculation (2) (200 CPM = 400 CPM)

Alarm Concentration: $\frac{400 \text{ CPM}}{9.03 \text{ x}^{17} \text{ CPM}/(\mu \text{Ci}/\text{Ci})} = 4.429 \text{ x} 10^{-6} \mu \text{Ci/cc}$

7.27

DC-R-3400

Location: Decay Heat Closed Cooling Water Loop B.

Sensitivity: 9.03x 10⁺⁷ CPM/(µCi/cc) (Cs¹³⁷)

HIGH ALARM SETPOINT: 2000 CPM

Basis: 10 times background to provide positive identification of

leakage. (Background = 200 CPM)

Calculation: (10) (200 CPM) = 5000 CPM

Alarm Concentration

$$\frac{2000 \text{ CPM}}{9.03 \times 10^{+7} \text{ CPM/}(\mu\text{Ci/cc})} = 2.215 \times 10^{-5} \mu\text{Ci/cc}$$

ALERT ALARM SETPOINT: 400 CPM

Basis: 2 times background to provide early detection of leakage. Calculation (2) (200 CPM = 400 CPM)

Alarm Concentration:
$$\frac{400 \text{ CPM}}{9.03 \times 17 \text{ CPM}/(\mu\text{Ci/cc})} = 4.429 \times 10^{-6} \mu\text{Ci/cc}$$

NS-R-3401

Location: Nuclear Services Closed Cooling Water.

Sensitivity: 9.03x 10⁺⁷ CPM/(µCi/cc) (Cs¹³⁷)

2000 CPM HIGH ALARM SETPOINT:

> 10 times background to provide positive identification of Basis:

leakage. (Background = 500 CPM)

Calculation: (10) (200 CPM) = 2000 CPM

2000 CPM

= 2.215 x 10⁻⁵ µCi/cc 9.03 x 10^{+7 CPM/} úCi/cc)

:

ALERT ALARM SETPOINT: 400 CPM

Alarm Concentration:

Basis: 2 times background to provide early detection of leakage. Calculation (2) (200 CPM = 400 CPM)

400 CPM $- = 4.429 \times 10^{-6} \mu Ci/cc$ Alarm Concentration: 9.03 x +7 CPM (µ Ci/Ci)

SF-R-3402 (Spent Fuel Cooling)

1

Location:	Spent Fuel Cooling Room		
Sensitivity:	<u>1.05 X 10⁺⁹CPM/µCi/cc</u>		
HIGH ALARM SETPOIN	1.0 X 10 ⁴		
Basis:	5 times background to provide positive identification		
	-of leakage (Backgound 2000)		
Calculation:	5 X 2000 CPM = 1.0 X 10 ⁴ CPM		
	$\frac{1.0 \times 10^{4} \text{ CPM}}{1.05 \times 10^{9} \text{ CPM}/\mu\text{Ci/cc}} = 9.52 \times 10^{-6} \mu\text{Ci/cc}$		
ALERT ALARM SETPOINT:	4.0 X 10 ⁺³		
Basis:	2 times background to provide positive		
	identification of leakage (Background 2000 CPM).		
Calculation:	2 X 2000 = 4.0 X 10 ⁺³ CPM		
	$-\frac{4.0 \times 10^{+3} \text{ CPM}}{1.05 \times 10^9 \text{ CPM/}_{\mu}\text{Ci/cc}} = 3.8 \text{ X}$		

1. 11

÷

Ŧ

WT-R-3894

Location: Water Treatment and Condensate Polishing

Sensitivity: 1.05 x 10⁺⁸ CPM/uCi/cc (I-131)

HIGH ALARM SETPOINT: 2000 CPM

> Basis: 10 times background to provide positive identification of

> > leakage. (Background = 200 CPM)

Calculation: (200 CPM) (10) = 2000 CPM

2000 CPM

= 1.9 x 10⁻⁵ µCi/cc Alarm Concentration: 1.05 x 10^{+8 CPM/}(µCi/cc)

ALERT ALARM SETPOINT: 1000 CPM

> 50% of High Alarm Setpoint. Basis:

Calculation: (2000 CPM) (0.5) = 1000 CPM

Alarm Concentration:

 $= 9.52 \times 10^{-6} \text{ uCi/cc}$ 1000 CPM 1.05 x 10^{+8 CPM/}(µCi/cc)

198 155

-22

WT-R-3895

1.1 · ~

Location:	Water Treatment	and Condensate	Palishing.
Sensitivity:	1.05 x 10 ⁺⁸ CPM/	uCi/cc (I-131)

HIGH ALARM SETPOINT: 1500 CPM

Basis: MPO water for I-131 (3 x 10⁻⁷ µCi/cc) assuming a maximum discharge (400 gpm) and minimum MDCT (17, 100 gpm) flow plus background.

(Background = 200 cpm)

Reference: 10 CFR 20, Appendix B, Table II.

Calculation: $(3 \times 10^{-7} \mu \text{ Ci/cc}) \{(17,100 \text{ gpm})/(400 \text{ gpm})\} =$

 $1.28 \times 10^{-5} \mu Ci/cc$ (1.28 x $10^{-5} \mu Ci/cc$) (1.05 x $10^{+8} CPM/\mu Ci/cc$) = -1344 CPM

1344 CPM + 200 CPM = 1544 CPM = 1.544×10^3 CPM

Alarm Concentration:

Since the meter can not be graduated to the calculated setpoint, the high alarm will be set at 1500 CPM, which is more conservative.

 $\frac{1500 \text{ CPM}}{1.05 \times 10^{+8} \text{ CPM}/\mu\text{Ci/cc}} = 1.43 \times 10^{-5} \mu\text{Ci/cc}$

ALERT ALARM SETPOINT: 750 CPM

Basis: 50% of High Alarm Setpoint.

Calculation: (1500 CPM) (0.5) = 750 CPM

Alarm Concentation: $\frac{750 \text{ CPM}}{1.05 \times 10^{+8} \text{ CPM}/(\mu \text{Ci/cc})} = 7.143. \times 10^{-6} \mu \text{Ci/cc}$

THI DOCUMENTS

Rey.

• •

DOCUMENT NO: TM-0400

COPY MADE ON

. . . .

. :

OF DOCUMENT PROVIDED BY

METROPOLITAN EDISON COMPANY.

Wilda R. Mullinix, NRC

7906140422

198 077

1

.....

-

23

.
